Optimal downlink power allocation in cellular networks
نویسندگان
چکیده
In this paper, we introduce a novel approach for power allocation in cellular networks. In our model, we use sigmoidal-like utility functions to represent different users’ modulation schemes. Each utility function is a representation of the probability of successfully transmitted packets per unit of power consumed by a user, when using a certain modulation scheme. We consider power allocation with utility proportional fairness policy, where the fairness among users is in utility percentage i.e. percentage of successfully transmitted packets of the corresponding modulation scheme. We formulate our network utility maximization problem as a product of utilities of all users and prove that our power allocation optimization problem is convex and therefore the optimal solution is tractable. We present a distributed algorithm to allocate base station (BS) powers optimally with priority given to users running lower modulation schemes while ensuring non-zero power allocation to users running higher modulation schemes. Our algorithm prevents fluctuation in the power allocation process and is capable of traffic and modulation dependent pricing i.e. charges different price per unit power from different users depending in part on their modulation scheme and total power available at the BS. This is used to flatten traffic and decrease the service price for users.
منابع مشابه
Backhaul-Aware Decoupled Uplink and Downlink User Association, Subcarrier Allocation, and Power Control in FiWi HetNets
Decoupling the uplink and downlink user association improves the throughput of heterogeneous networks (HetNets) and balances the traffic load of macro- and small- base stations. Recently, fiber-wireless HetNets (FiWi-HetNets) have been considered as viable solutions for access networks. To improve the accuracy of user association and resource allocation algorithms in FiWi-HetNets, the capacity ...
متن کاملJoint Allocation of Computational and Communication Resources to Improve Energy Efficiency in Cellular Networks
Mobile cloud computing (MCC) is a new technology that has been developed to overcome the restrictions of smart mobile devices (e.g. battery, processing power, storage capacity, etc.) to send a part of the program (with complex computing) to the cloud server (CS). In this paper, we study a multi-cell with multi-input and multi-output (MIMO) system in which the cell-interior users request service...
متن کاملA Survey on Resource Allocation in OFDMA Wireless Networks
OFDMA is the access scheme used in the third and fourth generation wireless cellular networks. Proper allocation of bandwidth and power is essential for ensuring the optimal performance and utilization of the resources in the OFDMA based cellular networks. The resource allocation in uplink direction and downlink directional will need different approaches. In uplink direction, different categori...
متن کاملOn Joint Sub-channel Allocation, Duplexing Mode Selection, and Power Control in Full-Duplex Co-Channel Femtocell Networks
As one of the promising approaches to increase the network capacity, Full-duplex (FD) communications have recently gained a remarkable attention. FD communication enables wireless nodes to simultaneously send and receive data through the same frequency band. Thanks to the recent achievements in the self-interference (SI) cancellation, this type of communication is expected to be potentially uti...
متن کاملInterference Cancellation trough Interference Alignment for Downlink of Cognitive Cellular Networks
In this letter, we propose the interference cancellation through interference alignment at the downlink of cognitive cellular networks. Interference alignment helps the spatial resources to be shared among primary and secondary cells and thus, it can provide higher degrees of freedom through interference cancellation. We derive and depict the achievable degrees of freedom. We also analyse and c...
متن کاملOptimal Power Management to Minimize SER in Amplify and-Forward Relay Networks
This paper studies optimal power allocation to minimize symbol error rate (SER) of amplify-and-forward cooperative diversity networks. First, we analytically solve optimal power allocation problem to minimize SER for three different scenarios, namely, multi-branch single-relay, single-branch multi-relay and multi-branch multi-relay cooperative diversity networks, all subject to a given total re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical Communication
دوره 17 شماره
صفحات -
تاریخ انتشار 2015